U.S. Department of Health and Human Services
Skip Left Navigation

Browse by Topic

Colorectal Cancer, Screening, 2016

* Indicates an old grade definition

Recommendations: Screening for Colorectal Cancer

Clinical Consideration:

Patient Population Under Consideration

This recommendation applies to asymptomatic adults 50 years and older who are at average risk of colorectal cancer and who do not have a family history of known genetic disorders that predispose them to a high lifetime risk of colorectal cancer (such as Lynch syndrome or familial adenomatous polyposis), a personal history of inflammatory bowel disease, a previous adenomatous polyp, or previous colorectal cancer.

When screening results in the diagnosis of colorectal adenomas or cancer, patients are followed up with a surveillance regimen, and recommendations for screening no longer apply. The USPSTF did not review or consider the evidence on the effectiveness of any particular surveillance regimen after diagnosis and removal of adenomatous polyps or colorectal cancer.

Assessment of Risk

For the vast majority of adults, the most important risk factor for colorectal cancer is older age. Most cases of colorectal cancer occur among adults older than 50 years; the median age at diagnosis is 68 years.3

A positive family history (excluding known inherited familial syndromes) is thought to be linked to about 20% of cases of colorectal cancer.1 About 3% to 10% of the population has a first-degree relative with colorectal cancer.7 The USPSTF did not specifically review the evidence on screening in populations at increased risk; however, other professional organizations recommend that patients with a family history of colorectal cancer (a first-degree relative with early-onset colorectal cancer or multiple first-degree relatives with the disease) be screened more frequently starting at a younger age, and with colonoscopy.8

Male sex and black race are also associated with higher colorectal cancer incidence and mortality. Black adults have the highest incidence and mortality rates compared with other racial/ethnic subgroups.3 The reasons for these disparities are not entirely clear. Studies have documented inequalities in screening, diagnostic follow-up, and treatment; they also suggest that equal treatment generally seems to produce equal outcomes.9-11 Accordingly, this recommendation applies to all racial/ethnic groups, with the clear acknowledgement that efforts are needed to ensure that at-risk populations receive recommended screening, follow-up, and treatment.

Screening Tests

The Table lists the various screening tests for colorectal cancer and notes potential frequency of use as well as additional considerations for each method. The Figure presents the estimated number of life-years gained, colorectal cancer deaths averted, lifetime colonoscopies required, and resulting complications per 1,000 screened adults aged 50 to 75 years for each of the screening strategies. These estimates are derived from modeling conducted by the Cancer Intervention and Surveillance Modeling Network (CISNET) to inform this recommendation.212

Stool-Based Tests

Multiple randomized clinical trials (RCTs) have shown that screening with the guaiac-based fecal occult blood test (gFOBT) reduces colorectal cancer deaths.1 Fecal immunochemical tests (FITs), which identify intact human hemoglobin in stool, have improved sensitivity compared with gFOBT for detecting colorectal cancer.1 Among the FITs that are cleared by the US Food and Drug Administration (FDA) and available for use in the United States, the OC FIT-CHEK family of FITs (Polymedco)—which include the OC-Light and the OC-Auto—have the best test performance characteristics (ie, highest sensitivity and specificity).1 Multitargeted stool DNA testing (FIT-DNA) is an emerging screening strategy that combines a FIT with testing for altered DNA biomarkers in cells shed into the stool. Multitargeted stool DNA testing has increased single-test sensitivity for detecting colorectal cancer compared with FIT alone.13 The harms of stool-based testing primarily result from adverse events associated with follow-up colonoscopy of positive findings.1 The specificity of FIT-DNA is lower than that of FIT alone,13 which means it has a higher number of false-positive results and higher likelihood of follow-up colonoscopy and experiencing an associated adverse event per screening test. There are no empirical data on the appropriate longitudinal follow-up for an abnormal FIT-DNA test result followed by a negative colonoscopy; there is potential for overly intensive surveillance due to clinician and patient concerns about the implications of the genetic component of the test.

Direct Visualization Tests

Several RCTs have shown that flexible sigmoidoscopy alone reduces deaths from colorectal cancer.1 Flexible sigmoidoscopy combined with FIT has been studied in a single trial and was found to reduce the colorectal cancer–specific mortality rate more than flexible sigmoidoscopy alone.14 Modeling studies conducted by CISNET also consistently estimate that combined testing yields more life-years gained and colorectal cancer deaths averted compared with flexible sigmoidoscopy alone.2 Flexible sigmoidoscopy can result in direct harms, such as colonic perforations and bleeding, although the associated event rates are much lower than those observed with colonoscopy.1 Harms can also occur as a result of follow-up colonoscopy.

Completed trials of flexible sigmoidoscopy provide indirect evidence that colonoscopy—a similar endoscopic screening method—reduces colorectal cancer mortality. A prospective cohort study also found an association between patients who self-reported being screened with colonoscopy and a lower colorectal cancer mortality rate.15 Colonoscopy has both indirect and direct harms. Harms may be caused by bowel preparation prior to the procedure (eg, dehydration and electrolyte imbalances), the sedation used during the procedure (eg, cardiovascular events), or the procedure itself (eg, infection, colonic perforations, or bleeding).

Evidence for assessing the effectiveness of computed tomography (CT) colonography is limited to studies of its test characteristics.1Computed tomography colonography can result in unnecessary diagnostic testing or treatment of incidental extracolonic findings that are of no importance or would never have threatened the patient’s health or become apparent without screening (ie, overdiagnosis and overtreatment).1 Extracolonic findings are common, occurring in about 40% to 70% of screening examinations. Between 5% and 37% of these findings result in diagnostic follow-up, and about 3% require definitive treatment.1 As with other screening strategies, indirect harms from CT colonography can also occur from follow-up colonoscopy for positive findings.

Serology Tests

The FDA approved a blood test to detect circulating methylated SEPT9 DNA (Epi proColon; Epigenomics) in April 2016.16 A single test characteristic study met the inclusion criteria for the systematic evidence review supporting this recommendation statement; it found the SEPT9 DNA test to have low sensitivity (48%) for detecting colorectal cancer.17

Starting and Stopping Ages

Available RCTs of gFOBT and flexible sigmoidoscopy included patients with age ranges of 45 to 80 years and 50 to 74 years, respectively. For gFOBT, the majority of participants entered the trials at age 50 or 60 years; for flexible sigmoidoscopy, the mean age of participants was 56 to 60 years.1

Microsimulation analyses performed by CISNET suggest that starting colorectal cancer screening at age 45 years rather than 50 years is estimated to yield a modest increase in life-years gained and a more efficient balance between life-years gained and lifetime number of colonoscopies (a proxy measure for the burden of screening).2 However, across the different screening methods, lowering the age at which to begin screening to 45 years while maintaining the same screening interval resulted in an estimated increase in the lifetime number of colonoscopies. In the case of screening colonoscopy, 2 of the 3 models found that by starting screening at age 45 years, the screening interval could be extended from 10 to 15 years. Doing so maintained the same (or slightly more) life-years gained as performing colonoscopy every 10 years starting at age 50 years without increasing the lifetime number of colonoscopies. However, 1 model estimated a slight loss in life-years gained with a longer screening interval and an earlier age at which to begin screening.2

The USPSTF considered these findings and concluded that the evidence best supports a starting age of 50 years for the general population, noting the modest increase in life-years gained by starting screening earlier, the discordant findings across models for extending the screening interval when the age at which to begin screening is lowered, and the lack of empirical evidence in younger populations.

The age at which the balance of benefits and harms of colorectal cancer screening becomes less favorable varies based on a patient’s life expectancy, health status, comorbid conditions, and prior screening status.18 Empirical data from randomized trials on outcomes of screening after age 74 years are scarce. All 3 CISNET models consistently estimate that few additional life-years are gained when screening is extended past age 75 years among average-risk adults who have previously received adequate screening.2

The USPSTF does not recommend routine screening for colorectal cancer in adults 86 years and older. In this age group, competing causes of mortality preclude a mortality benefit that would outweigh the harms.

Screening Intervals

Evidence from RCTs demonstrates that annual or biennial screening with gFOBT as well as 1-time and every 3- to 5-year flexible sigmoidoscopy reduces colorectal cancer deaths.1 The CISNET models found that several screening strategies were estimated to yield comparable life-years gained (ie, life-years gained with the noncolonoscopy strategies were within 90% of those gained with the colonoscopy strategy) among adults aged 50 to 75 years and an efficient balance of benefits and harms (see the full CISNET report for more details212). These screening strategies include 1) annual screening with FIT, 2) screening every 10 years with flexible sigmoidoscopy and annual screening with FIT, 3) screening every 10 years with colonoscopy, and 4) screening every 5 years with CT colonography. The findings for CT colonography depend on the proxy measure used for the burden of screening (number of lifetime colonoscopies or lifetime cathartic bowel preparations). Two of the 3 CISNET models found that FIT-DNA screening every 3 years (as recommended by the manufacturer) was estimated to yield life-years gained less than 90% of the colonoscopy screening strategy (84% and 87%, respectively). Another way to conceptualize these findings is to note that CISNET modeling found that FIT-DNA screening every 3 years was estimated to provide about the same amount of benefit as screening with flexible sigmoidoscopy alone every 5 years (Figure).2


Treatment of early-stage colorectal cancer generally consists of local excision or simple polypectomy for tumors limited to the colonic mucosa or surgical resection (via laparoscopy or open approach) with anastomosis for larger, localized lesions.

Other Approaches to Prevention

The USPSTF has made a recommendation on aspirin use for the primary prevention of cardiovascular disease and colorectal cancer in average-risk adults (www.uspreventiveservicestaskforce.org).

Agency for Healthcare Research and Quality - Advancing Excellence in Health Care

You are now leaving ePSS Electronic Preventive Services Selector website and going to
This website contains links to other federal and state agencies and private organizations. The Agency for Healthcare Research and Quality (AHRQ) cannot attest to the accuracy of information provided by these nonfederal website links. Linking to nonfederal sites does not constitute an endorsement by AHRQ or any of its employees of the sponsors or the information and products presented on the sites. You will be subject to the destination site's privacy policy when you leave the AHRQ website. Thank you for visiting epss.ahrq.gov.

Continue Cancel